Local scaling asymptotics in phase space and time in Berezin–Toeplitz quantization

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local trace formulae and scaling asymptotics in Toeplitz quantization

A trace formula for Toeplitz operators was proved by Boutet de Monvel and Guillemin in the setting of general Toeplitz structures. Here we give a local version of this result for a class of Toeplitz operators related to continuous groups of symmetries on quantizable compact symplectic manifolds. The local trace formula involves certain scaling asymptotics along the clean fixed locus of the Hami...

متن کامل

ec 2 00 8 Quantization as Asymptotics of Diffusion Processes in the Phase Space

This work is an extended version of the paper [1], in which the main results were announced. We consider certain classical diffusion process for a wave function on the phase space. It is shown that at the time of order 10−11 sec this process converges to a process considered by quantum mechanics and described by the Schrodinger equation. This model studies the probability distributions in the p...

متن کامل

Strong Phase-Space Semiclassical Asymptotics

Wigner and Husimi transforms have long been used for the phasespace reformulation of Schrödinger-type equations, and the study of the corresponding semiclassical limits. Most of the existing results provide approximations in appropriate weak topologies. In this work we are concerned with semiclassical limits in the strong topology, i.e. approximation of Wigner functions by solutions of the Liou...

متن کامل

Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition

Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...

متن کامل

Reduced Phase Space Quantization and Dirac Observables

In her recent work, Dittrich generalized Rovelli’s idea of partial observables to construct Dirac observables for constrained systems to the general case of an arbitrary first class constraint algebra with structure functions rather than structure constants. Here we use this framework and propose how to implement explicitly a reduced phase space quantization of a given system, at least in princ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics

سال: 2014

ISSN: 0129-167X,1793-6519

DOI: 10.1142/s0129167x14500608